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Résumé : Knowledge-based programs (KBPs) are high-level protocols describing the course of action
an agent should perform as a function of its knowledge. The use of KBPs for expressing action policies
in AI planning has been surprisingly overlooked. Given that to each KBP corresponds an equivalent plan
and vice versa, KBPs are typically more succinct than standard plans, but imply more on-line computa-
tion time. Here we make this argument formal, and prove that there exists an exponential succinctness
gap between knowledge-based programs and standard plans. Then we address the complexity of plan
existence. Some results trivially follow from results already known from the literature on planning under
incomplete knowledge, but many were unknown so far.

1 Introduction

Knowledge-based programs (KBPs) (Fagin et al., 1995) are high-level protocols which describe the ac-
tions an agent should perform as a function of its knowledge, such as, typically, if Kϕ then π else π′,
where K is an epistemic modality and π, π′ are subprograms.

Thus, in a KBP, branching conditions are epistemically interpretable, and deduction tasks are involved
at execution time (on-line). KBPs can be seen as a powerful language for expressing policies or plans, in
the sense that epistemic branching conditions allow for exponentially more compact representations. In
contrast, standard plans (as in contingent planning) or standard policies (as in POMDPs) either are sequen-
tial or branch on objective formulas, and hence can be executed efficiently, but they can be exponentially
larger (see for instance Bäckström & Jonsson (2011)).

Having said this, KBPs have surprisingly been overlooked in the perspective of planning. Initially deve-
loped for distributed computing, they have been considered in AI for agent design (Brafman et al., 1998)
and game theory (Halpern & Moses, 2007). For planning, the only works we know of are by Reiter (2001),
who gives an implementation of KBPs in Golog ; Claßen & Lakemeyer (2006), who implement KBPs in a
decidable fragment of the situation calculus ; Herzig et al. (2003), who discuss KBPs for propositional plan-
ning problems, and Laverny & Lang (2005a,b), who generalize KBPs to belief -based programs allowing
for uncertain action effects and noisy observations. None of these papers really addresses computational
issues.

A few papers in the AI planning literature have studied planning with incomplete knowledge where the
agent’s knowledge is represented by means of epistemic modalities, such as Petrick & Bacchus (2004).
Another recent stream of work focuses on describing planning problems within the framework of Dynamic
Epistemic Logic (Löwe et al., 2011; Bolander & Andersen, 2011)). Niyogi & Ramanujam (2009) also make
use of epistemic logic for planning with “action trials”, where action feedback corresponds to the action
succeeding or failing. However, in all these papers, epistemic formulas are used only for representing the
current knowledge state and the effects of actions, not in branching conditions, which bear on observations
only.

?. This work was supported by the French National Research Agency under grant ANR-10-BLAN-0215 (LARDONS).
†. Cet article est paru à TARK 2013 (Proc. 14th conference on Theoretical Aspects of Rationality and Knowledge).



Knowledge-Based Programs as Plans

Recently, Lang & Zanuttini (2012) have started to address the computational issues of planning with
knowledge-based programs, by identifying the complexity of plan verification under various assumptions
on the available constructs for plans and the available actions. Even if they briefly address the succinctness
of knowledge-based programs compared to standard plans, the discussion remains at an informal level ;
moreover they do not consider at all the plan existence problem, which is even more important for practical
planning purposes than plan verification. This paper contributes to fill these two gaps.

We define knowledge-based programs and planning problems in Section 3. Section 4 formally relates
KBPs to standard plans, by showing that both have the same expressivity, but that KBPs are exponentially
more succinct than standard plans. Section 5 focuses on the plan existence problem. We could think that
because KBPs and standard plans are equally expressive, KBP existence is equivalent to standard plan
existence, the complexity of which has been investigated, especially by Rintanen (2004). This is partly true,
and indeed some results about KBP existence directly follow from these earlier results. This is however not
true for (a) “small” KBP existence problems, where the objective is to find a small enough KBP allowing
to reach the goal ; (b) purely epistemic plan existence, which have surprisingly been ignored. Our main
results are the following : (a) the existence of a bounded-size solution KBP is EXPSPACE-complete, and
falls down to Σp3-complete if loops are disallowed, to Σp2-complete for the restriction to ontic actions and
the restriction to epistemic actions and positive goals ; (b) purely epistemic plan existence is PSPACE-
complete, and coNP-complete if the goal is a positive epistemic formula. Further issues are briefly evoked
in the conclusion.

2 Preliminaries
A KBP is executed by an agent in an environment. We model what the agent knows about the current state

(of the environment and internal variables) in the propositional epistemic logic S5. Let X = {x1, . . . , xn}
be propositional symbols. A state is a valuation ofX ; e.g., x1x2 is the state where x1 is false and x2 is true.
We sometimes use the notation xε with x1 = x and x0 = x̄. A knowledge state M for S5 is a nonempty set
of states (those the agent considers possible) : at any point in time, the agent has a knowledge stateM ⊆ 2X

and the current state is some s ∈ M . For instance, M = {x1x̄2, x̄1x2} means that the agent knows x1 and
x2 have different values in the current state.

Formulas of S5 are built up fromX , the usual connectives, and the knowledge modality K. An S5 formula
is objective if it does not contain any occurrence of K. Objective formulas are denoted by ϕ, ψ, etc. whereas
general S5 formulas are denoted by Φ, Ψ etc. For an objective formula ϕ, we denote by Mods(ϕ) the set
of all states which satisfy ϕ (i.e., Mods(ϕ) = {s ∈ 2X , s |= ϕ}). The size |Φ| of an S5 formula Φ is the
total number of occurrences of propositional symbols, connectives and modality K in Φ. It is well-known
(see, e.g., Fagin et al. (1995)) that any S5 formula is equivalent to a formula without nested K modalities ;
therefore we disallow them. An S5 formula Φ is purely subjective if objective formulas occur only in the
scope of K, and a purely subjective S5 formula is in knowledge negative normal form (SKNNF) if the
negation symbol ¬ occurs only in objective formulas (in the scope of K) or directly before a K modality.
Note that any purely subjective S5 formula Φ can be rewritten into an equivalent SKNNF of polynomial
size using de Morgan’s laws. An SKNNF formula is positive if the negation symbol never appears in front
of a K modality. For instance, K¬(p∧q)∨¬(Kr∨K¬r) is not in SKNNF, but is equivalent to the SKNNF
formula K¬(p∧q)∨ (¬Kr∧¬K¬r), which is not a positive SKNNF, whereas K¬(p∧q)∧ (Kr∨K¬¬r)
is a positive SKNNF.

The satisfaction of a purely subjective formulas depends only on a knowledge state M , not on the actual
current state (see, e.g., Fagin et al. (1995)) : M satisfies an atom Kϕ, written M |= Kϕ, if for all s ∈ M ,
s |= ϕ, and the semantics for combinations of atoms with ¬,∧,∨ is defined as usual.

3 Knowledge-Based Programs and Planning Problems
We briefly recall the essential definitions about KBPs (Lang & Zanuttini, 2012). Given a set AO of ontic

actions and a set AE of epistemic actions, a knowledge-based program (KBP) is defined inductively as
follows :

– the empty plan πλ is a KBP ;
– any action α ∈ AO ∪AE is a KBP ;
– if π and π′ are KBPs, then π;π′ is a KBP ;
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– if π, π′ are KBPs and Φ is a formula in SKNNF , then if Φ then π else π′ endif is a KBP ;
– if π is a KBP and Φ is a formula in SKNNF, then while Φ do π endwhile is a KBP.
The class of while-free KBPs is obtained by omitting the while construct. The size |π| of a KBP π is

defined to be the number of occurrences of actions, plus the size of branching conditions, in π. Finally, we
sometimes view while-free KBPs as trees, with some nodes labelled by actions and having one child (the
KBP following this action), and some nodes labelled by an epistemic formula and having two children (for
if constructs). Accordingly, we refer to branches of KBPs.

LetX ′ = {x′ | x ∈ X}, denoting the values of variables after an action has been taken. An ontic action α
is represented by its theory Σα, which is a propositional formula overX∪X ′ such that for all states s ∈ 2X ,
the set {s′ ∈ 2X

′ | ss′ |= Σα} is nonempty, and is exactly the set of possible states after α is performed in s.
For instance, with X = {x1, x2}, the action α which nondeterministically reinitializes the value of x1 has
the theory Σα = (x′2 ↔ x2). Observe that ontic actions are nondeterministic in general ; moreover, when
taking such an action the agent does not know which outcome occurred. We sometimes omit the “‘frame
axioms” of the form x′i ↔ xi from Σα, e.g., we write x′1 ↔ ¬x1 for the action of switching x1, whatever
the other variables.

Now, an epistemic action α is represented by its feedback theory Ωα, which is a list of positive epistemic
atoms of the form Ωα = (Kϕ1, . . . ,Kϕn). For instance, the epistemic action which senses the value of an
objective formula ϕ is denoted by test(ϕ), and its feedback theory is Ωtest(ϕ) = (Kϕ,K¬ϕ). We require
that feedbacks be exhaustive (ϕ1 ∨ · · · ∨ ϕn is tautological), so that in any state an epistemic action yields
a feedback, but we do not require them to be mutually exclusive ; if several feedbacks are possible in some
state, one is chosen nondeterministically at execution time.

Operational Semantics

The agent executing a KBP starts in some knowledge state M0, and at any timestep t until the execution
terminates, it has a current knowledge state M t. When execution comes to a branching condition Φ, Φ is
evaluated in the current knowledge state (i.e., the agent decides whether M t |= Φ holds).

The knowledge state M t is defined inductively as the progression of M t−1 by the action executed bet-
ween t − 1 and t. Formally, given a knowledge state M ⊆ 2X and an ontic action α, the progression of
M by α is defined to be Prog(M,α) = M ′ ⊆ 2X

′
defined by M ′ = {s′ ∈ 2X

′ | s ∈ M, ss′ |= Σα}.
Now given an epistemic action α, a knowledge state M , and a feedback Kϕi ∈ Ωα with M 6|= K¬ϕi,
the progression of M by Kϕi is defined to be Prog(M,Kϕi) = {s ∈ M | s |= ϕi}. The progression is
undefined when M |= K¬ϕi.

Example 1
Consider a system composed of three components ; for each i = 1, 2, 3, we have a propositional symbol
ok i meaning that component i is in working order, an ontic action repair(i) that makes ok i true, and an
epistemic action test(i) that returns the truth value of ok i ; for instance, Σrepair(1) = ok ′1 ∧ (ok ′2 ↔
ok2) ∧ (ok ′3 ↔ ok3) and Ωtest(1) = (Kok1,K¬ok1). Let π = π1;π2;π3, where πi is defined as

if ¬(Kok i ∨K¬ok i) then test(i) endif ;
if K¬ok i then repair(i) endif

With the initial knowledge state M0 = Mods((ok1 ↔ (ok2 ∧ ok3)) ∧ (¬ok2 ∨ ¬ok3)), its progression by
the ontic action repair(1) is M1 = Prog(M0, repair(1)) = Mods(ok1 ∧ (¬ok2 ∨ ¬ok3)). Iterating, we
have for instance that the progression of the knowledge state M1 by the feedback Kok2 of the epistemic
action test(1) isM2 = Prog(M1,Kok2) = Mods(ok1∧ok2∧¬ok3)), and progressing again by the ontic
action repair(3) we get the knowledge state M3 = Prog(M2, repair(3)) = Mods(ok1 ∧ ok2 ∧ ok3).

Finally, a trace τ of a KBP π in a knowledge state M0 is a sequence of knowledge states, either infinite,
i.e., τ = (M i)i≥0, or finite, i.e., τ = (M0,M1, . . . ,MT ), which corresponds to the iterated progression of
M0 by the actions in π, given an outcome s ∈ 2X (resp. a feedback Kϕ) for each ontic (resp. epistemic)
action encountered. We say that two KBPs π and π′ are equivalent (resp. equivalent in M0) if they have
exactly the same traces in any initial knowledge state (resp. in M0).

KBPs as Plans

We define a knowledge-based planning problem P to be a tuple (I, AO, AE , G), where I = Mods(ϕ0) is
the initial knowledge state, G is an SKNNF S5 formula called the goal, and AO (resp. AE) is a set of ontic
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(resp. epistemic) actions together with their theories. Then a KBP π (using actions in AO ∪ AE) is said to
be a (valid) plan for P if all its traces in I are finite, and for all traces (M0, . . . ,MT ) of π with M0 = I ,
MT |= G holds.

Interesting restrictions of knowledge-based planning problems are obtained either by restricting the form
of KBPs (by disallowing loops, or by bounding the size of the KBP), by restricting the set of actions allowed
(by requiring all actions to be ontic or all actions to be epistemic), or by adding a restriction on the goal
(by requiring it to be a positive KNNF). The restriction to positive goals deserves some comments. After
all, one may think that goals should always be positive – and in most of practical cases they will indeed
be : why should a robot care about not knowing something ? The more it knows, the easier it is to make
accurate decisions. This is true in a single-agent environment. Now, even if our paper does not address full
multi-agent environments (which are much more complex to handle), it allows to represent at least a simple
class of multi-agent planning problems, where only one agent is able to act but other agents observe its
actions and feedbacks. But there might be facts which the acting agent wants to avoid the other to learn, and
under the assumption that observations are considered as public announcements, the acting agent will also
want not to learn these facts 1.

4 Succinctness
So as to measure the benefit of using KBPs as plans, we compare them to what we call standard policies.

We define such policies exactly as KBPs, but allowing branching on feedbacks just obtained via an epistemic
action, rather than on unrestricted epistemic formulas. What we have in mind here is to compare KBPs to
reactive policies, for which the next action to take can be found efficiently at execution time.

Definition 1 (standard policy)
A standard policy is a KBP in which the last action executed before any branching if Φ or while Φ is an
epistemic action a such that Φ is some Kϕi ∈ Ωa.

Hence evaluating a branching condition of a standard policy at execution time only requires to compare
the feedback just obtained to the branching condition Φ. Particular cases of standard policies are policies for
partially observable Markov decision processes (POMDPs), which alternate the following steps : (i) taking
an (ontic) action, (ii) receiving an observation about the current state, and (iii) branching on the observation
received. Observe however that our definition is more general, in that the alternation between decision and
observation+branching steps is unrestricted, and that loops are allowed. For instance, our definition also
encompasses sequential plans (of the form a1; a2; . . . ; an), but also controllers with finite memory (Bonet
et al., 2010).

Clearly, for every initial knowledge state MO and every KBP π, there is a standard policy equivalent to
π in M0. Such a policy can be obtained by simulating all possible executions of π in M0 and, for each one,
evaluating all (epistemic) branching conditions. We only give an example here (a formal definition is given
in the Appendix — Definition 4 and Proposition 11).

Example 2
The standard policy associated with π and M0 in Example 1 is the following :

repair(1) ; test(2) ;
if K¬ok2 then

repair(2) ;
test(3) ;
if K¬ok3 then repair(3) endif

else repair(3)
endif

Such translations are of course not guaranteed to be polynomial, which raises the issue whether KBPs are
more succinct than standard policies. We first give a formal definition of succinctness.

1. The reader has certainly experienced the situation where the screen of her laptop, connected to a videoprojector, appears on a
screen in front of everyone and each of her actions (reading email, inspecting the contents of a directory. . .) could possibly reveal some
information she does not want everyone to see.
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Definition 2 (succinctness)
Let C = (Cn)n∈N be a class of KBPs (or standard policies), and let P = (Pn)n∈N be a family of planning
problems. Then C is said to be succinct for P if there is a polynomial p : N → N and a family (πn)n∈N of
KBPs satisfying πn ∈ Cn, |πn| ∈ O(p(n)), and such that πn is a valid plan for Pn.

A class C is said to be as succinct as a class C′ if for all families P of planning problems such that C′ is
succinct for P , C is also succinct for P . It is said to be more succinct than C′ if in addition, there is a family
P of planning problems for which C is succinct but C′ is not.

Note that our definition of being more succinct is quite demanding, since not only it requires that there is
no polysize KBP in C′ equivalent to π ∈ C, but also it requires that there is no polysize KBP which is valid
for the same problem (may it be nonequivalent to π).

Clearly, because standard policies are defined as particular cases of KBPs, the latter are always at least
as succinct than the former. We now show that KBPs are more succinct than standard policies, even under
several restrictions.

Proposition 1
If NP 6⊆ P/poly holds, while-free KBPs with atomic epistemic branching conditions are more succinct than
while-free standard policies.

Proof For all n ∈ N, we exhibit a KBP πn as in the claim which essentially reads a 3CNF formula over n
variables (hidden in the initial state), and either makes sure that it is unsatisfiable, or builds a model. This
KBP has size polynomial in n. Now assume there is a while-free standard policy π′ of size polynomial in |π|,
and hence in n, which is a valid plan for the same problem. Then because standard policies can be executed
with constant-time delay and because π′ is while-free, execution of π′ would be a (possibly nonuniform)
polytime algorithm for 3SAT, yielding 3SAT ∈ P/poly and hence, NP ⊆ P/poly. The construction of
the KBP πn and the definition of the knowledge-based planning problem Pn are detailed in the Appendix
(Proposition 12). �

Observe that the proof even shows that there are planning problems with succinct while-free KBPs (with
atomic branching conditions) but with no compact while-free plan with polynomial-delay execution (cf. the
notion of a compact sequential-access representation (Bäckström & Jonsson, 2011)). Observe however that
if loops are allowed, then there does exist a compact standard policy for the 3SAT problem (for instance,
the DPLL algorithm). However, it turns out that there are problems with succinct KBPs (with loops) but
with no succinct standard policy at all (even with loops).

Proposition 2
KBPs are more succinct than standard policies.

Proof There is a KBP π of size polynomial in n (in particular, manipulating a number of variables poly-
nomial in n) with exactly one trace in some precise initial knowledge state M0, of size 22n − 1 (Lang &
Zanuttini, 2012, Proposition 5). Now Proposition 13 in the Appendix shows that given a KBP π, a planning
problem P can be built efficiently, for which all valid plans are equivalent to π in M0 (up to a polynomial
number of void actions), and for which π is indeed valid. Towards a contradition, assume that there is a
valid standard policy π′ for P . Then π′ has exactly one trace, of size 22n − 1 (up to a polynomial). But if
π′ has size polynomial in n, then it can manipulate at most n variables, and because it is a standard policy
it can be in at most 2n|π′| different configurations (values of variables plus control point). Hence it cannot
have a terminating trace of length greater than 2n|π|, a contradiction. �

We conclude this section by considering the succintness gap induced by loops in KBPs.

Proposition 3
KBPs are more succinct than while-free KBPs.

Proof Assume towards a contradiction that for each KBP π, there is an equivalent while-free KBP π′

satisfying |π′| ≤ p(|π|). Then there is an algorithm showing that verifying a KBP (with loops) is a problem
in ΣP

3 (Proposition 14 in the Appendix). Since on the other hand we know that verifying an unrestricted
KBP is an EXPSPACE-hard problem (Lang & Zanuttini, 2012, Proposition 6), we get a contradiction with
ΣP

3 ⊆ PSPACE ( EXPSPACE (Savitch’s theorem). Finally, given a polynomial-size KBP π for which
there is no equivalent polynomial-size while-free KBP, we build a problem which has only π and equivalent
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KBPs as valid plans (Proposition 13 in the Appendix), and this problem shows that KBPs are more succinct
than while-free KBPs. �

5 Complexity of Plan Existence
We now consider the problem of deciding whether there exists a valid KBP for a given planning problem.

Since the main benefit of using KBPs is to get succinct (and readable) plans, we insist on the “small KBP
existence” problem, where we ask whether there exists a valid KBP within a given size bound.

Definition 3 (existence)
The plan existence problem takes as input a knowledge-based planning problem P = (I, AO, AE , G) and
asks whether there exists a valid KBP π for P . The bounded size plan existence problem takes as input
a knowledge-based planning problem P = (I, AO, AE , G) and an integer k encoded in unary, and asks
whether there exists a KBP π for P satisfying |π| ≤ k (and which is valid) 2.

We start with the complexity of plan existence, that is, without a size bound.

Proposition 4
Plan existence is 2-EXPTIME-complete. It is EXPSPACE-complete if only ontic actions are allowed.

Proof The first two results follow from the fact that there is a valid KBP for a given knowledge-based
planning problem P if and only if there is a valid standard policy for P (Proposition 11 in the Appendix),
together with known results by Rintanen (2004) and by Haslum & Jonsson (1999). �

Proposition 5
While-free KBP existence restricted to epistemic actions is PSPACE-complete.

Proof Write WFE-EXISTENCE for the problem of while-free KBP existence. We introduce a variant, called
WFOE-EXISTENCE (for “While-Free Ordered Epistemic”), in which a total order < on AE is given as an
additional input, and the question is whether there is a valid KBP for P , in which actions occur in the order
< in any execution. Then we show QBF ≤P WFOE-EXISTENCE ≤P WFE-EXISTENCE.

The reductions are given in the Appendix (Propositions 17 and 18). Because QBF is PSPACE-complete,
it follows that WFE-EXISTENCE is PSPACE-hard. Finally, because only epistemic actions are available,
the state never changes, and hence executing the same epistemic action twice in an execution is useless.
It follows that we are essentially searching for a tree of height at most |AE |, and membership in PSPACE
easily follows. �

Proposition 6
While-free KBP existence restricted to epistemic actions and positive goals is coNP-complete.

Proof This proof is essentially by a reduction to validity in S5 (Proposition 16 in the Appendix). �

Proposition 7
Bounded KBP existence is EXPSPACE-complete.

Proof For hardness, we reduce the problem of verifying that a KBP π is valid for a planning problem
P = (I, AO, AE , G) to plan existence, by building a planning problem P ′ with bound k = |π| for which π
is valid if and only if it is valid for P , and every valid plan is equivalent to π. For this we use Proposition 13
with the construction initialized with I and G. Hence if π is valid for P , then P ′ has a plan of size at most
k (namely, π), and if π is not valid for P , then P ′ has no valid plan. Because verification is an EXPSPACE-
hard problem (Lang & Zanuttini, 2012, Proposition 6), we get hardness. Membership follows from the fact
that a plan π can be guessed, that verifying that it is valid is in EXPSPACE (Lang & Zanuttini, 2012,
Proposition 6 again), and from NEXPSPACE = EXPSPACE (Savitch’s theorem). �

2. Encoding k in unary allows to ask for a plan of size, e.g., 2n where the size of the instance is polynomial in n, and consider
that an algorithm running in time O(2n) is efficient. For instance, if an algorithm perfectly guesses a correct plan step by step, it is
natural to consider it efficient independently from the number of steps.
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Proposition 8
While-free bounded KBP existence is Σp3-complete. Hardness holds even if the goal is restricted to be a
positive epistemic formula.

Proof Since solutions have bounded size, membership in ΣP
3 follows from the fact that while-free KBP

verification is in Πp
2 (Lang & Zanuttini, 2012, Proposition 2). For hardness, we give a reduction from

QBF3,∃ (Proposition 19 in the Appendix). �

Proposition 9
While-free bounded KBP existence restricted to ontic actions is ΣP

2 -complete.

Proof Because there is no feedback, there is no need for branching, therefore there is a plan of size at most
k if and only if there is a valid plan which is a sequence of at most k actions. The bounded KBP existence
problem is therefore equivalent to the bounded plan existence problem, which is known to be ΣP

2 -complete
(Baral et al., 1999) if the goal is positive atomic. Now membership in ΣP

2 in the general case follows from
the fact that verifying a plan can be done by computing the memoryful progression (Lang & Zanuttini,
2012) in polynomial time, then checking that it entails the goal using a coNP-oracle. �

As for purely epistemic planning problems, things are easy only in the case of positive goals.

Proposition 10
While-free bounded KBP existence restricted to epistemic actions and to positive goals is ΣP

2 -complete.

Proof Since the goal Γ is positive epistemic and the state cannot change, executing more epistemic actions
cannot render a valid plan invalid. In particular, removing all branching conditions and linearizing a valid
plan gives a valid plan. Hence there is a valid plan of size ≤ k if and only if there is a sequence of k
epistemic actions which is a valid plan. Hence the problem can be solved by guessing a plan a1; . . . ; ak and
checking

∧k
i=1(

∨
Kϕj∈Ωai

ϕj) |= Γ, which can be done by a call to a coNP-oracle. Now for hardness, we
give a reduction from QBF2,∃ (Proposition 20 in the Appendix). �

6 Conclusion
Our contributions are twofold. First, we have made formal the succinctness gap obtained by the possibility

to branch on complex epistemic formulas instead of simply branching on observations. Second, we have
obtained several nontrivial results on the complexity of KBP existence for a planning problem. The results
are synthesized in the table below. Note that as far as unbounded KBP existence is concerned, whether loops
are allowed or not does not make a difference : since valid plans are required to stop, every valid KBP with
loops can be rewritten into an equivalent while-free KBP. This remark helps us having all cells of the left
column filled.

unbounded bounded
general 2-EXPTIME-c. EXPSPACE-c.

while-free (wf) 2-EXPTIME-c. Σp3-c.
ontic EXPSPACE-c. ?

wf, ontic EXPSPACE-c. Σp2-c.
wf, epistemic PSPACE-c. ?

wf, epist.+pos. goals coNP-c. Σp2-c.

We do not know the complexity of KBP existence for while-free epistemic actions and arbitrary (not
necessarily positive) goals (we only know that it is Σp2-hard, and in Σp3). Neither do we know the complexity
of bounded plan existence with ontic actions and loops (other than membership in EXPSPACE).
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A Succinctness
Definition 4
Let π be a KBP and M0 be an initial knowledge state. The standard policy f(π,M0) induced by π and M0

is defined inductively as follows :
– if π is the empty KBP, then f(π,M0) is the empty standard policy,
– if π is α;π′ for an ontic action α ∈ AO, then f(π,M0) is α; f(π′,Prog(M0, α)),
– if π is α;π′ for an epistemic action α ∈ AE , then f(π,M0) is

α;
if Kϕ1 then f(π′,Prog(M0,Kϕ1))
elseif Kϕ2 then f(π′,Prog(M0,Kϕ2))
else . . .
endif

with {Kϕ1,Kϕ2, . . .} = Ωα,
– if π is if Φ then π1 else π2 endif ;π′, then (i) if M0 |= Φ holds then f(π,M0) is f(π1;π′,M0), and

(ii) otherwise ( i.e., M0 6|= Φ) f(π,M0) is f(π2;π′,M0),
– if π is while Φ do π1 endwhile ;π′, then (i) if M0 |= Φ holds then f(π,M0) is f(π1;π,M0), and

(ii) otherwise ( i.e., M0 6|= Φ) f(π,M0) is f(π′,M0).

Proposition 11
Let π be a KBP and M0 be an initial knowledge state. Then π and the standard policy f(π,M0) are
equivalent in M0.

Proof It is easily shown by induction on the structure of π that for every possible outcome (resp. feedback)
of an ontic (resp. epistemic) action taken in π, the iterated progression of M0 by π or f(π,M0) are the
same. �
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Proposition 12
There is a family of planning problems P = (Pn)n∈N for which there is a succinct family of while-free
KBPs (πn)n∈N, and any family of KBPs for P is a (possibly nonuniform) family of algorithms for 3SAT.

Proof Let n ∈ N, implicitly defining a set of n Boolean variables and the SAT problem for 3CNF formulas
over n variables. The variables and actions involved in the construction of πn are the following :

– n unobservable Boolean variables x1, . . . , xn, intuitively storing an assignment ~x to the variables of a
3CNF formula (this assignment is arbitrary and unknown to the agent),

– O(n3 × 3 log n) Boolean variables `i,j,k (i = 1, . . . , n3, j = 1, 2, 3, k = 1, . . . , log n), intuitively
encoding a 3CNF formula ϕ (`i,j,k represents the kth bit of the encoding of the literal in position j in
the ith clause) ; the value of these variables, i.e., the 3CNF formula, is arbitrary, but can be “read” by a
KBP through epistemic actions test(`i,j,k),

– an unobservable variable s (“satisfied”) which is necessarily false if ~x does not satisfy ϕ ; to model this,
the initial knowledge state is defined to be

M0
n =

∧
i=1,...,n3

¬χi → ¬s

where χi is true if and only if ~x satisfies the ith clause of ϕ (that is, χi is

∨
x∈{x1,...,xn

(x ∧
∨
j

`i,j = x) ∨ (x̄ ∧
∨
j

`i,j = x̄)


where `i,j = x is appropriately encoded over the “bits” `i,j,k),

– ontic actions x+
i and x−i , for i = 1, . . . , n, setting xi to 1 or 0, respectively.

The goal Gn of the planning problem Pn is either to know that s is false (Ks̄) or to know that ~x is a model
of ϕ (K(~x |= ϕ), expressed using a formula using the variables χi as above).

We claim that the KBP πn defined as follows is a valid plan for Pn :

test(`1,1,1); test(`1,1,2); . . . ; test(`n3,3,logn);
if Ks̄ then stop
else

if K¬(ϕ ∧ x1) then x−1 else x+
1 endif

. . .
if K¬(ϕ ∧ xn) then x−n else x+

n endif

where K¬(ϕ ∧ xi) is a shorthand for K¬(χ1 ∧ · · · ∧ χn3 ∧ xi).
Indeed, because the value of s cannot change during the execution, s is guaranteed to be false if and only

if the (arbitrary) initial assignment ~x does not satisfy ϕ. Because the initial value of ~x cannot be observed,
this is true if and only if ϕ is unsatisfiable. Otherwise, by definition an assignment to ~x can be built which
satisfies ϕ. Finally, Pn encodes 3SAT for formulas of n variables, and πn is a valid plan for it. �

Proposition 13
Given a KBP π and an initial knowlege state M0, one can build a knowledge-based planning problem
P = (I, AO, AE , G) in time polynomial in |π|, so that π is valid for P and all KBPs which are valid for P
are equivalent to π (up to additional variables in P and to a polynomial number of void actions).

Proof Using a polynomial number of void actions (with theory Σ =
∧
x∈X x

′ ↔ x for ontic actions
and Ω = {K>} for epistemic actions), we first normalize π so that it starts with an ontic action, then
epistemic and ontic actions alternate, and finally that only ontic actions occur right before and right after
any occurrence of if Φ then , else , endif , while Φ do , and endwhile . By duplicating actions, we also
ensure that any action is used at most once in π ; for example, we duplicate a to a1, a2, a3, with Σai = Σa,
for the first, second, and third occurrences of a in π. All these steps can clearly be performed in polynomial
time.

We now describe how I , AO, AE , and G are computed from π. The constructions are performed iterati-
vely, starting with I = M0, AO (resp. AE) being the set of ontic (resp. epistemic) actions occurring in π,
and G = K>.
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We describe in details how to handle the case when π is a sequence of actions. Handling of branching
and loops will be described more briefly, but relies on the same techniques. So let π = a1; . . . ; ak with
a1, a3, . . . being ontic actions and a2, a4, . . . being epistemic actions.

We first introduce two fresh variables, ok and s, and replace I with I ∧ Kok and G with G ∧ Kok ∧
¬(Ks ∨Ks̄). Intuitively, ok is known to be true at the beginning and must be known to be true at the end,
but taking any ontic action at another moment than π does will assign it to false as a side-effect. Now the
value of s (standing for “secret”) is not known initially and must not be known at the end, but taking any
epistemic action at another moment than π does will reveal its value.

Now for each sequence of actions ai; ai+1; ai+2 in π, where ai, ai+2 are ontic and ai+1 is epistemic,
we introduce two fresh variables, ri+1 (standing for “ready” to execute ai+1) and pi+2. Intuitively, ai will
assign ri+1 to 1, and ai+1 will reveal the value of pi+2 (only in case ri+1 is known to be true). Then ai+2 is
duplicated into two actions, exactly one of which has to be chosen, depending on the value of pi+2. In this
manner, we force ai+2 to occur only after a sequence ai; ai+1 in any valid plan.

More precisely, in AO and AE we :
– replace Σai with Σai ∧ r′i+1,
– replace Ωai+1

with {K(ϕ ∧ ri+1 → pεi+2),K(ϕ ∧ r̄i+1) | Kϕ ∈ Ωai+1
, ε = 0, 1},

– replace ai+2 with two ontic actions, namely api+2 and ap̄i+2 defined by{
Σapi+2

= Σai+2
∧ (ok ′ ↔ ok ∧ pi+2) ∧ r̄′i+2

Σap̄i+2
= Σai+2 ∧ (ok ′ ↔ ok ∧ p̄i+2) ∧ r̄′i+2

and make them reinitialize pi+2, that is, the frame axiom p′i+2 ↔ pi+2 is not in Σapi+2
,Σap̄i+2

.
Note that because the process is iterated, the first transformation is in fact applied to Σapi and Σap̄i

.
Moreover, for any other epistemic action a 6= ai+1, we
– replace Ωa with {K(ϕ ∧ (ri+1 → sε)) | Kϕ ∈ Ωa, ε = 0, 1} or, in the general case where this

transformation has already been performed for ri1 , . . . , rik , we replace it with

{K(ϕ ∧ (ri1 ∨ · · · ∨ rik ∨ ri+1)→ sε) | Kϕ ∈ Ωa, ε = 0, 1}

Finally, for handling the last action we introduce a fresh variable stop, and we replace I with I ∧ stop, G
with G ∧Kstop, Σak with Σak ∧ stop′, we replace ok ′ ↔ ok ∧ pεi with ok ′ ↔ ok ∧ pεi ∧ stop in all other
(ontic) action theories, and duplicate each feedback Kω in other action theories into K(ω ∧ (stop → sε)),
ε = 0, 1. For handling the first action, we replace I with I ∧ Kr1, add r̄1 to σa1

, and add feedbacks
Kr1 → sε, ε = 0, 1, to all epistemic actions.

We now claim that P as defined above has (a plan equivalent to) π as a valid plan, and that any other valid
plan for it is equivalent to π (in both cases, up to void actions and additional variables).

As regards validity of π, consider the plan π′ obtained from π by replacing all subsequences ai; ai+1; ai+2

with
ai; ai+1; if Kpi+2 then api+2 else ap̄i+2 endif

Then clearly, when execution comes to ai+1, ri+1 is true (and known to be so), hence one of the feedbacks
K(ri+1 → pεi+2) is obtained, revealing the truth value of pi+2. Hence api+2 or ap̄i+2 is correctly chosen
for preserving achievement of the goal Kok . Moreover, because for all j < i, the value of rj has been
reinitialized by action aj , the feedback of ai+1 gives no clue about the value of s (through K(rj → sε)),
preserving the goal ¬(Ks ∨Ks̄).

Now let π′ be any plan which is valid for P , and consider a fixed sequence of outcomes for ontic actions
and feedbacks for epistemic actions, with the aim of showing that π′ takes (up to void actions) the same
actions as π, in the same order. The proof works by induction.

First assume that π′ takes an ontic action ai 6= a1 as its first action. Then because of the effect ok ′ → ri
and since the value of ri is not known in the initial state I , the goal Kok is not preserved. Since no action
allows to set it back, this is a contradiction with the validity of π′. Now assume that π′ takes an epistemic
action ai as its first action. Then because r1 is true in the initial state, ai reveals the value of s, a contradiction
again since this value cannot change along the execution. Moreover, by construction the knowledge state
resulting from taking a1 satisfies Kr̄1 and Kr2, no variable ri (i 6= 2) is known to be true in it, and the
value of no variable pi is known.

We now consider the second action taken by π′. Because r1 is false this cannot be a1, and because the
value of pi is known for no i, this cannot be api nor ap̄i , for any ontic action ai. Hence this is an epistemic



JFPDA 2013

action, but because r2 is true this can only be a2 (otherwise the value of s would be revealed). Now by
construction, the resulting knowledge state satisfies Kr̄1 and Kr2, no variable ri (i 6= 2) is known to be
true in it, the value of p3 is known in it, and finally the value of no other pi is known.

Finally consider the third action taken by π′. Taking any ontic action other than ap3 or ap̄3 would result
in a blind choice of api or ap̄i since the value of pi (i 6= 3) is not known. Now taking an epistemic action
other than a2 would reveal the value of s (since r2 is known to be true). Finally, either π′ takes a2 again,
which amounts to a void action, or it takes a3. Now by construction, after a3 is taken the knowledge state
satisfies Kr4, no variable ri (i 6= 4) is known to be true (since a3 assigns r3 to false), and the value of no
pi is known (since a3 reinitializes p3). Hence we are in the same situation as after the first action has been
taken, and the induction goes on, which concludes for KBPs π which are simple sequences of actions.

We now briefly show how to handle subprograms of the form

a; if Kϕ then b; . . . else c; . . . endif ; . . .

We introduce a new fluent, f (“forbidden”), and add ¬Kf to the initial knowledge state and to the goal.
Recall that due to the normalization step, actions a, b, c are all ontic. Then we

– replace Σa with Σa ∧ r′b,c,
– replace Σb with Σb ∧ ok ′ ↔ (ok ∧ rb,c ∧ ϕ) ∧ r̄′b,c,
– replace Σc with Σc ∧ ok ′ ↔ (ok ∧ rb,c ∧ (f ′ ↔ f ∨ ϕ)) ∧ r̄′b,c.

and as in the case of sequences, we add feedbacks to all epistemic actions, so that they reveal the value
of s if executed when rb,c is known to be true. The construction ensures that executing b while Kϕ is not
true results in ¬Kok , hence violating the goal, and that executing c while Kϕ is true results in Kf , again
violating the goal.

Finally, subprograms of the form

while Kϕ do a; . . . ; b endwhile ; c

are handled exactly as if they were

if Kϕ then (a; . . . ; b; if Kϕ then a else c) else c;

The fact that the two occurrences of a refer to exactly the same action simulate a “goto” construct and
hence, ensure that a valid plan loops when necessary. �

Proposition 14
If while-free KBPs are as succinct as KBPs (with loops), then verifying a KBP with loops is a problem in
ΣP

3 .

Proof Let p be a polynomial such that for all KBPs π, there is an equivalent while-free KBP π′ satisfying
|π′| ≤ p(|π|). Then given a KBP π and a planning problem P , verifying that π is valid for P can be done
by the following algorithm, which essentially guesses an equivalent while-free π′ and verifies it instead of
directly verifying π :

1. guess a while-free KBP π′ of size at most p(|π|),
2. check that π′ and π are equivalent ; the complement can be decided as follows :

(a) guess a trace τ of size |π′| and the corresponding sequence of outcomes of ontic actions and
feedbacks of epistemic actions,

(b) from the outcomes and feedbacks, compute the corresponding trace of π,
(c) check that at some point, π and π′ are not in the same knowledge state,

3. verify that π′ is valid for P .
The traces in Item 2 can be represented in space polynomial in |π′| using memoryful progression (Lang &
Zanuttini, 2012). Checking that π and π′ are in different knowledge states at some point can be done by
verifying that their memoryful progressions are not equivalent over the variables of this timepoint, which
is a problem in ΣP

2 (guess a disagreeing assignment and check that it can be extended to a model of one
progression but none of the other).

Finally, Item 2 can be solved by a call to a ΣP
2 -oracle. Moreover, verifying a while-free KBP (Item 3) is a

problem in Πp
2 (Lang & Zanuttini, 2012, Proposition 2). Finally, we get a nondeterministic algorithm using

a ΣP
2 -oracle (or a Πp

2-oracle), hence the whole problem is in ΣP
3 . �
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B Plan Existence
Proposition 15
Plan existence is ΣP

2 -hard if only epistemic actions are allowed.

Proof We give a reduction from QBF2,∃. Let

∀a1 . . . an∃b1 . . . ∃bpϕ

be a QBF formula. We define an epistemic planning problem P = (I, ∅, AE , G) by :
– I = K>,
– AE = {test(a1), . . . , test(an)},
– G = ¬K¬ϕ ∧

∧n
i=1(Kai ∨Kāi).

Clearly, any valid plan for P must perform all actions in all branches, since test(ai) is the only action
revealing the value of ai. Hence, there is a valid plan for P if and only if performing all actions in sequence
constitutes a valid plan π. Now this KBP π is valid for P if and o nly if for every ~a ∈ 2{a1,...,an}, it holds
K~a |= ¬K¬ϕ, that is, for every ~a ∈ 2{a1,...,an}, there is a~b ∈ 2{b1,...,bp} with ~a~b |= ϕ. �

Proposition 16
Plan existence is coNP-complete if only epistemic actions are allowed and the goal is restricted to be a
positive epistemic formula.

Proof We first show membership. Because the goal is positive, it is easy to see that adding epistemic
actions cannot render a valid plan invalid, and hence the problem amounts to deciding whether performing
all actions in sequence constitutes a valid plan π. Because there are no ontic actions, and hence the state
never changes, this amounts to checking that the formula

∧
a∈AE

(
∨

Kϕi∈Ωa
ϕi) entails G. We conclude by

observing that this formula has size polynomial in |AE | and that the entailment test is one in propositional
logic, hence in coNP.

Hardness follows from the following reduction from UNSATISFIABILITY : a propositional formula ϕ is
unsatisfiable if and only if the planning problem with no action, initial knowledge state K> and goal K¬ϕ
has a plan. �

Proposition 17
There is a polynomial-time reduction from QBF to WFOE-EXISTENCE.

Proof Let ψ = ∃a1∀b1 . . . ∃ak∀bkϕ be a QBF, where a1, . . . , ak and b1, . . . , bk are Boolean variables
(restricting the quantifiers to scope over only one variable is without loss of generality, since any QBF
can be rewritten in this manner by introducing dummy variables). We define the following instance P =
(I, ∅, AE , G,<) of WFOE-EXISTENCE, where intuitively ai (resp. āi) is encoded by “revealing the value
of xi” (resp. “not revealing the value of xi”), and bi (resp. b̄i) is encoded by “yi is (known to be) true” (resp.
false) :

– I = K>,
– AE = {test(xi) | i = 1, . . . , k} ∪ {test(yi) | i = 1, . . . , k},

– G = ϕ with


ai replaced with Kxi ∨Kx̄i
āi replaced with ¬Kxi ∧ ¬Kx̄i
bi replaced with Kyi
b̄i replaced with Kȳi

,

– < is (test(x1), test(y1), test(x2), . . . , test(xk), test(yk)).
Assume first that there is a strategy σ witnessing the validity of ψ, and build a KBP π from σ by :

– replacing any decision node ai ← 1 with the action test(xi),
– replacing any decision node ai ← 0 with the empty KBP,
– replacing any branching node on bi with 1-child σ1 and 0-child σ0 with the KBP

test(yi); if Kyi then π1 else π0 endif

where π1 (resp. π0) is obtained recursively from σ1 (resp. σ0).
Clearly, the order of actions in π follows<. Now by construction, test(xi) (resp. test(yi)) is the only action
revealing the value of xi (resp. yi), and validity of π for P follows.

Conversely, let π be a KBP for P , and let πN be its normalized, equivalent KBP, obtained by
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– removing all nonatomic branching conditions, e.g., by replacing a test if Φ ∧ Ψ then . . . endif with
the test if Φ then if Ψ then . . . endif ,

– replacing each negative atomic branching condition of the form ¬K` with K¯̀ if it has test(`) as an
ancestor on its branch, and with K> otherwise (then simplifying),

– removing any occurrence of test(`) which has test(`) as its parent,
– pushing up any test, e.g., if K`, right after the action test(`) on the same branch, and reorganizing the

KBP as necessary (since we are not concerned with size bounds, it does not matter if this incurs an
explosion in size).

Then define a strategy σ from πN by
– replacing test(xi) with a decision node ai ← 1,
– ignoring actions test(yi),
– replacing if Kxi then π1 else π0 endif with σ1 or with σ0, arbitrarily, where σ1 (resp. σ0) is obtained

recursively from π1 (resp. π0),
– replacing if Kyi then π1 else π0 endif with a branching node on bi, with 1-child σ1 and 0-child σ0.

Clearly, σ witnesses the validity of the QBF ψ. Why σ1 or σ0 can be chosen arbitrarily in the third item is
because xi and x̄i play a symmetric role in P . �

Proposition 18
There is a polynomial-time reduction from WFOE-EXISTENCE to WFE-EXISTENCE.

Proof Let P = (I, ∅, AE , G,<) be an instance of WFOE-EXISTENCE, and write AE = {a1, . . . , an}
with ai < ai+1 for all i. We define an instance P ′ = (I ′, ∅, A′E , G′) which forces the actions to occur in
order in any valid plan. To do so, for each action ai ∈ AE we essentially (i) duplicate ai into two actions, api
and ani , and (ii) modify the feedback of ai−1 such that it reveals the value of an otherwise hidden variable
pi−1. Then we modify the goal G so that api must be taken if ai−1 yielded Kpi−1, and ani must be taken
if ai−1 yielded Kp̄i−1 (“p” stands for “positive” and “n” for “negative”). In this manner, a valid plan must
execute ai−1 before ai, for otherwise it cannot choose between api and ani .

More precisely, for each action ai ∈ AE we introduce two fresh variables, pi and ni, and four more,
µpi , µ

n
i , µ

p̄
i , µ

n̄
i , which act as mutexes between the “twin” actions api and ani . Then we define the following

actions :
– api , representing the action to take when ai−1 yielded Kpi−1 or Kn̄i−1, with feedback theory Ωapi =

{K(ϕ ∧ pδi ∧ (µpi )
ε) | Kϕ ∈ Ωai , δ, ε = 0, 1},

– ani (dually), with feedback theory Ωani = {K(ϕ ∧ nδi ∧ (µni )ε) | Kϕ ∈ Ωai , δ, ε = 0, 1},
– ap̄i , representing the “pass” action when ai−1 yielded Kpi−1 or Kn̄i−1, with feedback theory Ωap̄i

=

{K(pδi ∧ (µp̄i )
ε) | δ, ε = 0, 1},

– an̄i , with feedback theory Ωan̄i = {K(nδi ∧ (µn̄i )ε) | δ, ε = 0, 1}.
We define A′E to be {api , ani , a

p̄
i , a

n̄
i | i = 1, . . . , n}, and we define the goal G′ to be :

G ∧


∧n
i=2 (Kpi−1 ∨Kn̄i−1)→ (Kpi ∨Kp̄i)

∧
∧n
i=2 (Kp̄i−1 ∨Kni−1)→ (Kni ∨Kn̄i)

∧
∧

i=1,...,n

a,b∈{p,n,p̄,n̄}
a6=b

(¬Kµai ∧ ¬Kµ̄ai ) ∨ (¬Kµbi ∧ ¬Kµ̄bi )

Finally, we define I ′ = I , and we show that there is a valid KBP π for P if and only if there is a valid KBP
π′ for P ′.

First let π be a valid KBP for P . We build a KBP π′ as follows. We replace each occurrence of an action
ai in π with if Kpi−1 ∨ Kn̄i−1 then api else ani endif . Now for each nonoccurrence of ai in π, i.e., at
each place where ai−1 occurs right before ai+d, d > 1, we insert a “pass” action by inserting the KBP
if Kpi−1 ∨Kn̄i−1 then ap̄i else an̄i endif . It is easily shown by induction on π′ that each time a variant of

action ai is taken, either the value of pi−1 or the value of ni−1 is indeed known, and validity of π′ follows.
Conversely, let π′ be a valid KBP for P ′. Because of the mutexes µai , at most one variant of each action

ai can occur along any branch of π′. Moreover, if, say, api occurs twice along a branch, then the deepest
occurrence can be removed without changing the validity of π′, since there are only epistemic actions and
hence, the state never changes. Finally, because of the first and second sets of clauses inG′, starting from the
first action in π′ all other actions must follow in order. Hence a valid KBP π for P can be built by replacing
api or ani with a, ignoring all “pass” actions ap̄i , a

n̄
i , and finally removing all tests on fresh variables pi, ni,
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and µai ’s, keeping the “else” or “then” subprogram arbitrarily. By construction, the resulting KBP π is valid
for P , and the order of actions in π respects <. �

Proposition 19
While-free bounded KBP existence with a positive epistemic goal is Σp3-hard.

Proof Let ψ = ∃a1 . . . an∀b1 . . . bp∃c1 . . . cqϕ be an instance of QBF3,∃. Without loss of generality, we
assume n = p (otherwise we add dummy variables). We define an instance P = (I, AO, AE , G) of while-
free bounded KBP existence by :

– I = K>,
– AO = {α+

i , α
−
i | i = 1, . . . , n} ∪ {γ+

j , γ
−
j | j = 1, . . . , q}, where :

– α+
i (resp. α−i ) assigns 1 (resp. 0) to ai and, as a side effect, nondeterministically reassigns all bj’s,

– γ+
i (resp. γ−j ) assigns 1 (resp. 0) to cj ,

– AE = {test(ai ↔ bi) | i = 1, . . . , n},
– G = Kϕ ∧

∧p
j=1(Kbj ∨Kb̄j),

– k = 2n+ (|ϕ|+ 3)q.
Assume that ψ is a positive instance of QBF3,∃. Then there exists an assignment ~a ∈ 2{a1,...,an} and a
conditional assignment f : 2{b1,...,bp} → 2{c1,...,cq} such that for each ~b ∈ 2{b1,...,bp}, ~a~bf(~b) satisfies ϕ.
Let α∗i = α+

i if ai is assigned 1 in ~a and α∗i = α−i if it is assigned 0. Let π be the following KBP :

α∗1; . . . ;α∗n ; test(a1 ↔ b1); . . . ; test(an ↔ bn) ;
if K(ϕ→ c1) then γ+

1 else γ−1 ;
. . . ;
if K(ϕ→ cq) then γ+

q else γ−q ;

Clearly, π is a valid plan for P , and its size is 2n+ (|ϕ|+ 3)q.
Conversely, assume I is a negative instance of QBF3,∃, that is, for every assignment ~a ∈ 2{a1,...,an} there

is an assignment g(~a) ∈ 2{b1,...,bp} such that for each ~c ∈ 2{c1,...,cq}, ~ag(~a)~c satisfies ¬ϕ. We claim that
there is no valid plan π for P — and a fortiori, no valid plan of size at most ≤ 2n + (|ϕ| + 3)q. Indeed,
assume there is a plan π for P . First, the only way of knowing the truth value of the bi’s it to perform
test(ai ↔ bi) after an action α+

i or α−i . Therefore, every execution of π must contain at least an action α+
i

or α−i and further on, test(ai ↔ bi). Moreover, if another action α+
j or α−j appears later in the execution,

after test(ai ↔ bi) has been performed, then, because all variables b1, . . . , bp are nondeterministically
reassigned, test(ai ↔ bi) has to be performed again after that. Therefore, each execution of π must contain,
in a first part, at least an action α+

i or α−i for every i, then, in a second part, all actions test(ai ↔ bi) and
no action α+

i nor α−i (but possibly some actions γ+
i or γ−i ).

Now consider an execution e of π, and for i = 1, . . . , n, let vi(e) = 1 (resp. 0) if the last occurrence of an
action α+

i or α−i is α+
i (resp. α−i ), and let ~a(e) ∈ 2{a1,...,an} be the corresponding assignment. Moreover,

consider the point in the execution e just after the last action α+
i or α−i has been performed. After this

point, all actions test(ai ↔ bi) are executed. Consider the particular execution e′ where the results of these
actions are such that the revealed truth value of the variables b1, . . . , bp constitute exactly the assignment
g(~a). The actions γ+

i , γ
−
i taken (before or after this point or after it) result in an assignment ~c of c1, . . . , cq .

Now, by assumption, ~ag(~a)~c does not satisfy ϕ, therefore this particular execution does not satisfy the goal,
contradicting the validity of π. �

Proposition 20
While-free bounded KBP existence restricted to epistemic actions and to positive goals is ΣP

2 -hard.

Proof We give a reduction from QBF2,∃. Let ψ = ∃a1 . . . an∀b1 . . . ∃bpϕ be a QBF formula. We build a
planning problem P as follows :

– we use propositional symbols a1, . . . , an, b1, . . . , bp, c, d1, . . . , dn,
– AE = {α1, . . . , αn, β1, . . . , βn} defined by the feedback theories

Ωαi
= { K(c→ ai) ∧ di,K(c→ ai) ∧ ¬di,

K(c ∧ ¬ai ∧ di),K(c ∧ ¬ai ∧ ¬di) }
Ωβi = { K(c→ ¬ai) ∧ di,K(c→ ¬ai) ∧ ¬di,

K(c ∧ ai ∧ di),K(c ∧ ai ∧ ¬di) }



JFPDA 2013

– G =
∧
i=1,...,n(Kdi ∨K¬di) ∧ (Kc ∨K(c→ ϕ)),

– k = n.
If ψ is valid then let ~a ∈ 2{a1,...,an} be an assignment which witnesses this fact. Let π the KBP γ1; . . . ; γn,
where γi is αi if ~a assigns 1 to ai, and γi is βi if it assigns 0 to it. After every possible execution of π, either
the agent knows c, or it knows

∧
i(c → ~a) ; in the latter case, because ~a~b |= ϕ for all ~b, the agent knows

c→ ϕ, hence in both cases the second part of the goal is satisfied. Finally, by construction the agent knows
the truth value of each di, and hence π is a valid plan containing exactly n actions.

Conversely, assume that there is a valid plan of size ≤ n. Because the agent must learn the truth value
of each di, π must contain αi or βi for each i, and since π is of size n, it contains exactly one of αi
or βi for each i. Now consider the execution of π in which the sequence of observations is of the form
K(c → aε11 ) ∧ dδ11 , . . . ,K(c → aεnn ) ∧ dδnn . After this execution, the agent does not know c, therefore,
since π is valid, it knows c → ϕ. This means that

∧
i(c → aεii ) ∧

∧
i d
δi
i entails K(c → ϕ), which entails∧

i(c → aεii ) |= c → ϕ, which is itself equivalent to
∧
i a
εi
i |= ϕ and hence, ∃a1 . . . an∀b1 . . . ∃bpϕ is a

valid instance of QBF2,∃. �


